ON A SUPER TELESCOPING SUM REPRESENTING BINOMIAL
COEFFICIENTS
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ABSTRACT. For n € N and z € C\ Zq, we define the super telescoping sum
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n k
Sn(z) ::Z Z Z H(Z+M¢+Ni_1)(Z+Mi+Ni)7

k=1ni+-+ng=n m1>0 =1
Ny, ,ng>1 mo,...mp>1

where M; = mi+---+m;for 1 <i<k, Ng=0,and N; =ny+---+n; for 1 <i < k.
An equivalent form of S,,(z) was studied by Javad Latifi and Pickrell [2]. They showed,
by using techniques and results from loop group theory and random matrix theory, that
Sn(z) = (ZJFZ*l). In this note we provide a direct, elementary proof of this identity.

1. INTRODUCTION

For n € N and z € C\ Z., we consider the super telescoping sum S, (z) defined by
k

k=1 ni+--+nr=n m1>0 =1
N1, ,np>1 mo,...mp>1

where M; =m;+---+m;for 1 <i: <k, Ng=0,and N; =n;+---+n; for 1 <i < k. For
n = 1 we have the familiar telescoping sum

i) = ;0 (z4+my)(z+my +1) -

It is not hard to see that the infinite sum over my, ..., my is absolutely and uniformly con-
vergent on any compact subset of C\ Z<g. Since z = 0 is a removable singularity (actually
a zero) of S, (z), we know that S,,(z) defines an analytic function on C\ Zy.

The super telescoping sum S, (z), in an equivalent form, was studied by Javad Latifi
and Pickrell [2]. They gave an indirect proof of the identity S,(z) = (**"7') based on
complicated machinery from loop group theory and random matrix theory. This interesting
identity arises naturally in the context of Gaussian free fields, Verblunsky sequences and
loop group factorization. In the more recent paper [1], Javad Latifi proposed the challenge
of finding a direct proof of the identity for S, (z). The purpose of the present note is to give
a short, elementary proof of this identity.

Theorem 1.1. Forn € N and z € C\ Z<y we have S,(2) = (*"71).

n

Theorem 1.1 has recently been applied by Javad Latifi [1] to determine the explicit ex-
pression in terms of the Riemann zeta-function for the partition function of a lattice model
with certain number-theoretic flavor.
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2. ELEMENTARY IDENTITIES INVOLVING QUOTIENTS OF FALLING FACTORIALS

For any integer n > 0, the falling factorial (x),, is defined by

n—1

@) :=][@—d) =2@@-1)-(z—n+1)

j=0

with the obvious convention that (z)o := 1. In this section, we prove two simple identities
involving quotients of falling factorials (or equivalently, quotients of binomial coefficients)
which will be used in our proof of Theorem 1.1.

Lemma 2.1. Form >k > 1 andn > 1, we have

m§jj‘1k1= e )

(n+ k1 (n+my

Proof. We induct on m > k. The case m = k is trivial. Suppose that (1) holds for arbitrary
k,n > 1 and some m > k. Then

(G Di  (m) kn - (m)g—1
k:nz N+ (n+m) - (n+m + 1)k

j=k
() g1
= n+m+1)(m—k+1)+kn
et X )+ k)
(m) k-1
= n+m—k+1)(m+1
tmt 1>k+1( ) )
(n+m+1);
Hence, (1) also holds for arbitrary k,n > 1 and m + 1. This completes the proof. 0

Lemma 2.2. Form > 0 and n > 1, we have

- (m)J _ l (2)

= (n+m)jy1 n

Proof. We prove (2) by induction on m > 0. The base case m = 0 is clear. Suppose that (2)

holds for arbitrary n > 1 and some m > 0. Then

mif (m+l); _ 1  m+l (m);—1
(m+m+1)jy1 n+m+1l n+tm+1= (n+m);

+
—_

m

<.
Il

1 m+1 m);
_ n 3 (m);
n+m+1 n—i—m—i—ljzo(n—i—m)jH
1 m—+1 1 1

n+m+1 n+m+1 n n
This shows that (2) also holds for arbitrary n > 1 and m + 1, finishing the induction.
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Remark 2.1. Although our proofs of Lemmas 2.1 and 2.2 are inductive, it may be of interest
to prove these results using combinatorial arguments. For instance, we can also prove Lemma
2.2 as follows. Let A, B C N be two disjoint subsets of positive integers with |A|= m and
| B|= n. We consider all the permutations (z1, ..., Z,1.,) of the elements in AU B, and there
are of course (n + m)! of them. On the other hand, for each 1 < j < m + 1, the number
of permutations (z1, ..., Zp+m) such that z1,...,2;_1 € A and z; € B is easﬂy seen to be
n-(m);_1-(n+m—j)l. Since for every permutation (21, ..., Zptn) the smallest index j for
which z; € B satisfies 1 < j <m + 1, we have

Zn (n+m—j )= (n+m).

One deduces (2) at once by dividing both sides of the above identity by n - (n + m)! and
changing the summation index j into j + 1.

3. S,(z) DEFINES A POLYNOMIAL

To prove Theorem 1.1, we introduce a slightly more general super telescoping sum. Let
m>0,n>1and z € C\ Z.y. We define the super telescoping sum S,, ,(z) by

Z Z Z 11_[ 2+ M; + N;_ 1)(2+M+N)

k=1 ni+-+ngp=n m1>0
ni,..,ng>1 ma,..mp_12>1

2

2
Z (z4+ My + Ni_1)(z + My, + Ny +m)’

mg>1

Then S,,,(2) is analytic on C\ Zo with S,,,(0) = 0. In particular, Sp,(2) = S,(2). For
n = 1 one computes easily that

Spi(z) =22 Z L

0 (z+m1)(z+my+m+1)

S i 1 1
_m+1m1:0 z+my  z+mi+m+1

22 1
T m+1 247 (3)
7=0 J

The following result enables us to compute S, ,,(2) recursively for all m > 0 and n > 1.

Proposition 3.1. For m >0, n > 2 and z € C\ Z,, we have

22 mzﬂ Somn-1(2) — Sj,n—l(Z)

Smn :Sm n— -
) (Z) +1, 1(Z>+m+1]:1 j
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Proof. We split the sum over nq, ..., n in the definition of S, ,(2) into two parts according
as ng = 1 or ng > 1. Explicitly, we write Sy, .(2) = 57, ,(2) + 57, ,(2), where

n k—1 2
S = - '
m,n(z) ; n1+';lk:n 77%0 E (Z + Mz + Ni_l)(Z + Ml + Nz)

N1, ng—121ng=1ma,..,mg_1>1
2

z
Z (z4+ My + N_1)(z + My, + Ny +m)’

mg>1
" — A 2
Sm,n<z) = ; n1+mz+;lkn n;() ];11: (Z + M; + Ni_l)(Z + M; + Nz)
n1,.nep—12>21,n>1mo,...omp_1>1
Z2
Z (z4+ My + Ni_1)(z + My, + Ny +m)’

mg>1

Note that

-1 k—1

Smn(2) = > > I (z+ M; + Ni1)(z + M; + N;)

k=1 n1+~~~+(nk—1):n—1 m1>0 =1
Nty Np_1>1,n>1 m2,...,mp_12>1

3

2

¥4
ZI (Z + Mk + Nk_1)<Z + Mk + Nk + m)

k

s 3
=V

2

=2 2 H(z+Mi+Ni,1)(z+Mi+Ni)'

k=1 ni+-+ng=n—1 m1>0 =1
ni,.,ng=l ma,.mp_1>1

2

Z : = Serl,nfl(z)-

<Z+Mk+Nk_1)<Z+Mk+Nk+m+1)

mi>1

On the other hand, we have

Swn2) =D D, 2 1} (2 + Mj + Nioy)(z + My + N;)

k=2 ni1+-4np_1=n—1 m1>0
nl,‘.,nk,121 ’VTLQ,...,mk_lZl

2

z
Zl (Z + Mk + Nk,1>(2 + Mk + Nk,1 +m + 1)

k>
1

3

B

3

2

=2 2 2 H(z+Mi+Ni,1)(z+Mi+Ni)'

k=1 ni1+--4np=n—1 m1>0 =1
ni,..,ng=l  ma,..mp>1

2

z
Z (z—l—Mk—l—mkH—i—Nk)(z—l—Mk—i—mkH+Nk+m—|—1)'

ME41>1
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The inner sum over my; above is equal to

22 Z ( 1 1 )
m+1 z—{—Mk—l—mk+1+Nk 2+Mk+mk+1+Nk+m+1

my412>1
m+1j:1 24+ My + N+ 7

It follows that
m+1n—1 2

S;n,n(z):erlZZ Z Z H(z+M@-+N¢71)(Z+Mi+Ni).

j=1 k=1 n1+-+ni=n—1 m1>0 =1
ni,..,ng>1l  mao,... mE>1

212

(z+ My + Ni_1)(z + My, + Ni)(z + My + Nk + j)

L2 malyonol k—1 2
T mt1 ; j ;nﬁm;kn_l g{) 11 (z+ M; + N;i_1)(z + M; + N;)

n,..,ng>2l  mao,.. mE>1

22 22
((z+Mk + Nee)(z+ My, + Ny) (2 + My + Ny_1)(z + My + Ny, +j))

_ 22 mX—‘r:l SO,n—1<Z) — Sj,n—l(z)

m—i—ljz1 J

Proposition 3.1 follows now upon combining the expressions for Sy, (z) and S}, ,(2). O

Javad Latifi showed, by exploring certain cancellation patterns in the partial fraction
decomposition of S, (z), that S, (z) defines a polynomial of z (see [1, Theorem 1]). It is not
hard to see that this is a simple corollary of Proposition 3.1.

Corollary 3.2. For m > 0 and n > 1, we have (z +1)---(z + m)S,,.(2) € Q[z]. In
particular, we have S,(z) € Q[z].
Proof. The case n =1 is easily seen to be true from (3). By Proposition 3.1 we have

22

Y 42 oy N Sin(2)
Smner(2) = (1 (m+1)2) Smiial2) + 200 (H’”“SO’”( )2 j )

J=1

where H,,.; is the (m + 1)th harmonic number. The corollary follows now by induction on
n based on the identity above. 0

Remark 3.1. One can show further, by bounding the series defining S, ,(z) in an almost
trivial way, that the polynomial (z + 1) -+ (z +m)Sm.n(z) has degree m + n.

4. PROOF OF THEOREM 1.1

We are now in a position to prove Theorem 1.1. As we pointed out, Proposition 3.1 allows
us to obtain S, ,(z) recursively based on (3) for S, 1(z). Hence to prove Theorem 1.1, we
shall prove the following more general formula for S,, ,(z).
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Theorem 4.1. Form >0, n>1 and z € C\ Z-y, we have

G () = (1 B n; y j_mn?bi;kﬂ > —]r_ k) (z —l—Z— 1). (4)

Proof. We induct on n > 1. For n = 1, (3) implies that

m m m

1 1 J 1 J
Sm = —- 1-— . =11- :
1(2) (m+1j2; m+1j2;z+j>z ( m+1;z+]>z

as desired. Suppose now that (4) holds for all m > 0 and some n > 1. Then it follows from
Proposition 3.1 that S, ,+1(2) = Crnpy1(2) (57), where

n+1
n+1 L (m+ 1) k nz? W k
Crini1(z) = 1—n . + '
nt1(2) z+n< ;(rw—m—kl)k“ z+k m—i—lj;; J)k+1 a4k

By Lemma 2.1 we have

m+1 J . m+1m+1 , . m
niﬁé@—mﬂ‘k :n+ DG K :Ef(m+m k
=i n+ k1 2+Ek == m+ k1 2z+Ek — m+m+1) z+k
which implies that
2 m+1 7 . k’ m+1 ( ) m+1 ]{72
k—1
= — )+
m+121; kst itk kz(n+m+1 kz n+m+1kz+k5

Substituting this into the definition of C),,,11(2) above, we obtain

n+1 m+1 (m+1)k (m)k‘—l > k
Conni1(2) = 1- ' -k
nt1(2) z—l—n( ;(n (n4+m+ 1)k (ntm+1)) z+k

+Z n—l—m+ ( _k>>

Note that
(m + 1)l~c . (m)k_l _ (m)k—l (. tint B
(4 m+ 1) g (”+m+1)k_(n+m+1)k+1( (m+1)—k(n+m+1-k))

= (m)s (n—k).

(n+m+ 1)
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Thus, we have

Conn1(2) _ Z’”:  k(n—k) +’”§ (M 2=k
nt+l  z+n p n—l—m+1)k+1 (z+k)(z+n) Z(m+m+1)i z+n
(m)s S (M) !
1+ k- - +k
( ; (n+m+ 1)k ;(n )(n+m+1)k z4+n
m—+1 m
I Y S
- 1(n+m+1 — n+m+ Vo1 2+ k
By Lemma 2.2 we see that
m+1 m
S ey -
p (n+m+1 0 n+m+1 Jer1 n+1
and that
m+1 ( ) m (m)
dh) ke + 14k u
;m )(n—l—m—l— gn )(n—|—m—|—1)k+1
(n+1 i (m)s +ik- ()
- (n+m+ 1)k p (n+m+ 1)
S (m)
=1+
; (n+m+1)k+1
It follows that .
Cm’nJrl(Z) _ 1 _ Z (m)k ) k
n+1 n+1

~nt+m+ e 2tk

Therefore, we conclude that

z+n < k Z+n
= 1— 1 .
Smnt1(2) = Cimp41(2) (n—i—l) ( (n + Z n—|—m+1 k1 Z+k> (”—1-1)

=1
By induction, (4) holds for all m > 0 and all n > 1. O
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